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1 Banach Space Properties of Lorentz Spaces

1.1 Proof of completeness, duality, and more

Theorem 1.1. For 1 <p < oo and 1 < q < o0,
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Thus, || - |5p.q is equivalent to a norm, with respect to which LP4(R%) is a Banach space.
Moreover, for q # oo, the dual of LP? is L4 under the natural Pairing.

Proof. Last time, we saw that it suffices to prove the equivalence for functions of the form

f=> 2"p,
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with Fj, measurable, pairwise disjoint, and || f|;, ~ H2"|Fn|1/p|u% ~ 1. Last time, we
showed that RHS < LHS by testing it on g = > 2™1p with E,, measurable, pairwise

disjoint, and [[gl[} /., ~ ||2m\Em|1/p/H£q/ < 1. Let’s show that LHS < RHS.
Compare: in the case of LI(R?), we take g = m%lnf. Here, we take
q
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It remains to show that | g|| < 1. By the proposition which evaluates the norm as a

dyadic sum,

*
Lo

% q ’ 1 )l
(gl w)" ~ D0 N7l N < gla) < 2N}/
Ne2Z

Note that {z : g ~ N} = Unesy £n, where Sy = (neZ:2MD|F,|YP1 ~ N} = {n e
Z: |Fp| ~ [N2~Ma-Dp/(a=p)},
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This is a dyadic sum, so we can pull the exponent inside (by our lemma).
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Use ¢' = q/(q—1).
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The RHS defines a norm |||-||. To see that LP? equiped with this norm is a Banach
space, one uses the usual Riesz-Fischer argument.
Step 1: If || fn|| € LP? are such that ) ||-|| < oo, then there exists a function f € LP4

such that f=>" f, in ||-]|-
Step 2: For a Cauchy sequence {f,}n>1 C LP9, we pass to a subsequence so that

‘kanﬂ — fknm < 2% So by Step 1,
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For 1 < ¢ < 00, we want to show that the dual of LP9 is LP"7. Let £ : L?? — R be a
linear functional, so [[€(f)|| < || fll;p.q- For f = 1g with E of finite measure,

((1p) S |BIVP.

So the measure E — {(1 ) is absolutely continuous with respect to Lebesgue measure. So
there exists a g € L _such that

loc

((1p) = / o(2)1 p(x) dz.

As £ is linear, we get
() = [ rgla)do
for all simple functions f € LP9,

e Claim 1: Boundedness of ¢ on simple functions yields g € L7

e Claim 2: Simple functions are dense in LP? if ¢ # oco.

Given these two claims, we get £(f) = [ f(z)g(z)dz for all f € LP49. Thus, the dual of
LP i [P0
Proof of Claim 1: It is enough to show that if ¢ = Y 2™1p, with E,, measurable,
pairwise disjoint, we have
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Choose f = u<ar (2m|Emyl/p )q |Em|~Y/P1p . Then
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We have £(f) S |[fl[zpa, s0
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This gives
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uniformly in M. So g € LP"9.
Proof of Claim 2: Consider f > 0 and look at fm, = fligm<jcgm+1y. For 2mtn < | <
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Then 0 < fr—@mn < 5+ First choose ¢ > 0. If we look at || f||5 p.q|l|| fm || zr|les, only finitely

many terms matter, so we can truncate the series. This lets us estimate || fm — ©mnlly .
as any large numbers we get will be multiplied by our small step size, 2% O
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